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Abstract —Symmetry of linear mechanical systems permits one to substantially reduce the effort in
their analysis. Classification and structural analysis of the finite lincar symmetric systems (models)
are studied in this paper. There are two variants of the symmetry approach: mechanical and
algebraic. In accordance with the former. a symmetric system is replaced by one or several small
nonsymmetric subsystems which are subjected to special loads obtained from the initial set. The
total response of the original symmetric system is found by special superposition of partial responses
of these subsystems. The algebraic approuch is bused on the explicit block diagonal decomposition
of the matrix equation corresponding to a symmetric system. While both approaches have the same
efficiency the latter is casier to implement and describe. It is presented here. The condtions under
which the svmmetry technigue may be utilized do not include symmetry of the applied loads
(specifically. symmetry of those loads which form the right side of the associated equations).
Nevertheless. if the loads are symmetric, the efficiency of the symmetry approach substantially
increases. Group theory, which is widely used in this paper, is the mathematical tool for the study
of symmetry. and all necessary notions are introduced.

[. INTRODUCTION

1.1. The most time-consuming part of the analysis of large lincar mechanical systems
is associated with the construction and the solution of systems of lincar cquations. Even
with the assistance of modern computers this problem is still of a great value. Fortunately,
for many technological requirements large mechanical systems are often composced of a
huge number of identical clements or subsystems. Many types of these “ordering™ systems
permit special, very eflicient, methods of analysis. Symmetric systems form an important
class of “ordering™ systems.

Symmetry of the mechanical system is usually associated with its geometry. System S
will be called symmetric (more precisely geometrically symmetric) if there exist rigid body
motions known as symmetry transformations (or operations) which bring S into coincidence
with itself with no breaks and/or intersections. There are three basic symmetry operations:
rotations about axcs, reflections in planes and translations. Two hundred and thirty different
types of symmetric systems (SS) are left unaltered under these symmetry transformations.
Every such system is infinitely large in the dircctions which possess the property of trans-
lational symmetry.

In this paper, the study of the SS is limited to a set of the finite symmetric systems
which includes 14 different types. For such a purpose one has to eliminate translations from
the set of symmetry operations under consideration.

1.2. The symmetry technique in the analysis of mechanical systems is utilized in two
ways, which can be called the mechanical and the algebraic approaches. According to the
former, the original symmetric system is replaced by one or several small, nonsymmetric
subsystems. One has to build the special loads which these subsystems are subjected to and
calculate the partial responses using the standard technique. The total response of the
original system is then determined by a special superposition of the partial responses.

The algebraic approach, presented in this paper, is based on the explicit block diagonal
decomposition of the matrix equation corresponding to the original symmetric system.
While both approaches have the same efficiency, it seems that the latter is easier to describe
and implement.

. 1.3. Group theory is the mathematical tool for the study of symmetry. [t is widely used
in quantum mechanics and crystallography ; see Rosen (1983). Wigner (1959). Hamermesh
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(1962). Falicov (1966). and Landau and Lifshitz (1977). Its first application to structural
mechanics was made by Wigner in 1930. The next 50 years brought many publications in
this field: Singh and Mishra (1972). Kardestuncer and Berg (1974, Muller (1981), Zhong
and Qiu (1983). Burishkin and Gordeev (1984), Dinkevich (1984). and others. Note that
in the case of simple finite symmetric systems the symmetry technique may be utilized with
no involvement of group theory : see MacNeal et af. (1973} and Dinkevich (1977). It was
even concluded that the finite element analysis of symmetric systems does not require the
use of group theory (Everstine. 1987), which is certainly incorrect if we want to exploit
symmetry systematically and completely. Group theory and especially group representation
theory will be widely used in this paper. Although it is assumed that the readers are familiar
with this subject, all necessary notions are introduced throughout the paper.

2. FINITE SYMMETRIC SYSTEMS

2.1. Finite symmetric systems (FSS) are those which are left unaltered under such
symmetry operations as rotations about axes and reflections in planes. Symmetry operations
will be denoted by g, g.. etc., and g, will always present the identity transformation which
leaves system S unmoved: g, = ¢. A successive application of two symmetry operations g,
and g, is also a symmetry operation, denoted by the product g, g, if g, precedes g, or by g,g,
il g; follows g.. In general g,9, # g,9,. otherwise operations g, and g; are called commutative.
Suppose that under rotation g, = ¢}, = |,..., 2 through the angle %, = (j— 1)+ 2rn/n about
an axis ¢, system S is keft unaltered. Then, this axis is called the n-fold rotational axis and
is denoted by ¢, (# is its order). The product of two rotations, not necessarily about the
SAME axis, s 4 new rotation : ¢, = ('f,. The product of two reflections (¢ = ¢) in the same
planc returns § to the initial state and is trcated as the identity transformation:
60 = o’ = ¢. Rotations through angles @, = 0 and x,, , = 2r also return system S o its
initial state, hence ¢ = "' = ¢. The product of rotation ¢} about an axis ¢, and reflection
o in the perpendicular plane, that is ocl, is also a symmetry transformation, known as a
rotation reflection (or improper rotation) about a rotation reflection axis s,,. Subscript 2a
emphasizes the fact that such an axis is always of an even order. Rotation reflections are
denoted by st,. Operations ¢ and ¢ commute, henee 55, = ocl = clo.

Axes ¢, and s, and planes o are called the symmetry elements of systems S. Let 4, be
a certain point of § which doces not belong to any symmetry element ; then under A symmetry
operations this point will be located at A different places A, = g, 4, /= 1, .. f Itisevident
that under /1 symmetry transformations subsystem S, containing a neighbourhood of this
point will occupy # different parts of S. Thus, if under # symmetry operations system §
coincides with itself, it must be composed of 4 identical subsystems S, j = 1,... A Wecall
them the primitives, since they possess no symmetry elements. The Sy, chosen arbitrarily,
is called the fundamental primitive. Thus

4
s=1Js,. (
gl

2.2. It is convenient to classify finite symmetric systems into three symmetry classes
with respect to the order of their axes. The first (or lowest) class includes the FSS which
have 2-fold axes and, possibly, some planes of reflection. The second (or middle) class is
composed of systems which possess one n (23)-fold axis, a principal axis, and possibly,
some second-order axes as well as symmetry planes. We call them the cyclically symmetric
systems, the CSS. The third (or highest) class comprises systems which have several axes
of order n > 3. We associate them with five Platonic solids, or regular polyhedra, namely,
tetrahedrons (containing four regular triangular faces), hexahedrons or cubes (six square
faces), octahedrons (eight regular triangular faces), dodecahedrons (12 regular pentagonal
faces). and icosahedrons (20 regular triangular faces). In this paper we arc interested in the
second class of symmetric systems since it is mostly used in practice.

There are seven types of the CSS which we will denote as C,, Sz, Cane Cove Dy Do
and D,,. They are distinguished in types and numbers of symmetry elements and are shown
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in Table | (column 4). The types and numbers of symmetry elements are given in column
3, where ¢, and s, are the symmetry axes, and oy, o, and g, are the symmetry planes. o,
represents a horizontal plane (in general, the plane which is perpendicular to the principal
axis), g, indicates vertical planes (i.e. planes passing through the principal axis), and o4
denotes the diagonal planes, that is. the vertical planes which do not pass through the
horizontal axes ¢, but pass midway between each pair of them.

Having a principal axis (c, or sa,), every CSS is composed of n or 2n identical faces.
Each face may or may not be symmetric ; their symmetry is marked by small circles (**holes™)
in column 4. Possessing no symmetry elernents, nonsymmetric faces will be called the
primitives. Symmetric faces are divided into p primitives, whose total number is

h=pn, p=1.2 or 4. )

Table t. Cyclically symmetric systems {CSS)
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As shown in Table | (column 5). p = | corresponds to system C,. the simplest C8S. It has
no other symmetry elements but the principal axis ¢.. System S, also has nonsymmetric
faces. which are arranged differently from those in €, (as illustrated by holes). Their number
is 2n, hence po= 2. Each of # fuces of the next three sastems. Cp. €, and D,. possesses one
additional symmetry element: a horizontal plane 5, or g vertcal plane o, or a horizonul
axis ¢, Therefore every fuce of these syvstems is divided into p = 2 primitves depicted in
Table 1 by dotted lines. Faces of D, contain three symmetry elements each, namely. o, 7,
and ¢.. hence they are divided into p = 4 primitives. Finally, the last system D, can be
derived from D, by adjoining to it # vertical planes a3, ay”. which de not pass through
horizontal axes &', ... ¢ but midway between each two. In this case the principal axis
¢, becomes a rotationad reflection axis 5.0 therefore, it 1s easier to deduce system D, from
S., by adding n vertical planes a4/'. ... 7" passing through midlines of opposite faces of
5., as is done in Table 1. Each of the 2x faces of D,y 15 divided into two primitives whose
total number is 4, hence p = 4.

2.3. The numbering sequence of faces and primitives of the €SS (see column 4 of Tuble
1} 1s chosen to satisty the following evchic rule: (@) 7 taces ot systemis G, Gy G D, and
D, are labeled by subscript g from 1 to n counterclockwise. Systems 8., and D, have 2n
faces. We distinguish among their “top™ and “bottom™ faces. Top faces are marked by
holes on the top and are numbered by o= L0 a0 while bottom faces are marked by holes
on the bottom and are labeled by g+ # in the sume direction: {(b) primtitives of C,and 5,
cotncide with their faces and are labeled accordingly. The first primitive of the je-th face of
systems C Col D, and Dy, has the same subseript g others et (systems Cy,, G, and
DLy oor gobn, g+ 2o and b 3 (system D). They are also cnumerated in the counter-
clockwise direction. Each face of 1, consists of two primitives, left and right, Left top
primitives of ) are labeled by e left bottom by gt a, night top by o+ 2, and right
bottom primitives by jo+ 3

According to (1) any finite synunetric system s a unton of /7 primitives, in the case of
the CSS /= prand one can write

T

®op
“S' = uU} )LJ} ‘S.Jt DR Fier- (»“)

Symmietry operations are numbered according 1o the same cyelic rude, hence under
operation g, the fundamental primitive S, comneides with the primitive S,

S =¢85, [f=1... h (4)
or

Sevie i =G S o= loons o v=do o p=ln (]
It follows from the cyclic rule that the first # symmetry operations of any CSS are rotations
{(more precisely, proper rotations) ¢ ' through the angles (1 —1) - 2rn/n about the principal
axis. Other operations (see Table 1, columns 6 -9) are more complicated : they are products
of basic operations ¢ ' with additional operations as reflections in planes 7. 4, or 4, or

rotations about horizontal axes ¢. (these rotations through 1807 are denoted by u.):

TR | I i

A et e e ey and o
Both notations. (4) and (5). will be used in the further discussion: (4) as a rule in
algebraic manipulations while (3) in most tables, since it contains more detail. Clearly

TS

JEpslv—Dm j=1... h pu=1.... ny o ov=1l,.....p=hn {6)

1 is necessary to emphasize that in all of these products a proper rotation ¢ ! follows reflections 6s or a
rotation .. Also note that while the eperation 6, conumutes with any other operation, 6,4, = ¢,74. aperations
o, and u, (=a,e) do not commute with operations of other type. For example.
b “20 Aceording o this, operations 5. o, and «. may be calied anti- or skew-cor-

..
M .
e, =a,

mutative.

A
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3. SYMMETRY GROUPS AND MATRICES G,

3.1. Symmetry operations form a group G = [g,}7., of order 4. i.e. a set of elements
Gie Yrooenn g satisfying the following four conditions (or group postulates): (1) closure:
¢.9, belongs to G. (2) associativity : ¢,(g,4.) = (4.9,)9:. (3) existence of the identity: g, = ¢,
and (4) existence of inverse elements g, ' e G such that g.¢,” ' = ¢ 'y, = g,. If all elements
of a group commute: g9, =g,¢.0 j= ..., h. then G is called commutative or Abelian.
otherwise it is called non-Abelian. If a subset of elements g,.....g, of group G also form
a group. say. G . then G, is called a subgroup of G. One group may have several subgroups,
and a given element of a group may appear in different subgroups. For example, g, = ¢ is
the first element of each subgroup of group G.

Symmetry operations of the FSS comprise finite (if # < x) or continuous groups.
These groups are known as point groups because any finite symmetric system has at least
one fixed point which does not move under any symmetry transformation (such points
belong to axes or planes. or to their intersections). Since a trivial group G = {¢} can be
associated with an asymmetric system, we define a finite symmetric system as that which
possesses a point group of order i > 1. Symbols C,. S....... D,y which we used to denote
the CSS are introduced by Schoenflics for the corresponding point groups (Hamermesh,
1962 ; Falicov. 1966). Hence system C, possesses point group C, (known as a cyclic group).
system S,,—group S.,, and so on. Continuous point groups C,. C . C... D, and Dy,
are symmetry groups of the CSS with the principal axis of complete axial symmetry. It is
convenient to treat them as the limit case of the finite point groups, n — . We will study
the FSS with finite symmetry groups. Note that in accordance with Table | (columns 6-9)
group C, is the highest subgroup of all point groups, group S, is a subgroup of D,,. groups
C.. G,y and D, are subgroups of group D, cte.

3.2, In the previous section symmetric systems are classified with respect to their
symmetry elements (axes and planes). Here we continue their description based on the
symmetry operations. Let 8 bea certain FSS:.8 = U7, 8, (D). Introduce the identical FSS,
S =U" |87 and superimpose them so that the fundamental primitive S of system S is
carricd into S, of §t. Then the primitive S of S7 will coineide with i certain primitive off
S.say S, or, more precisely, with S, because the integer w (1 € w € h) depends onjand /.
Inaccordance with (4). S, = 8., = g3 s ontheother hand, §7 = ¢85 = ¢,5, = ¢,94.5).
Hencee

Guiin = 4,90 Lj=1....h (N

with the property
wij, 1) =4 wl.i) =1 (8)
Symmetry of the FSS (i.e. the structure of the associated symmetry group) is completely

described by products (7) which form a special 4 x i matrix known as the group (multi-
plication} table. We will use it in a transposed form and call the matrix G, :

g1 cee 4, e Yn

> e 494: ces 9y ‘
Gw = [‘/m.n)f'./« 1= [y;.‘/.]:; .l = . (9)

In coe | Gign e un

t Recalling that §, = ¢.5), we have to note that if operation g, is a proper rotation ¢, then system 57 1s an
exict copy of . However, if g, is a reflection a. or a rotation «, or their products with ¢ then system S° must be
a mirror reflection copy of S otherwise, its primitives will be labeled inconsistently with primitives of S. For
example. if § = D,,. one has to introduce four copies of D,,: an exact copy S°, two refiection copies S” and §™
corresponding to o, and g,. respectively, and S obtained from S by rotation about ¢,. Since u, = o,0, system
S% is a double reflection copy of S. ’ ) ’
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3.3. One can write (h— 1)! matrices G, for the same group G = {g,}7. | since there are
{/— 1)! sequences of & group elements (g, = e by convention). The cyclic rule for labeling
of the primitives and svmmetry operations described in Section 2 reduces this number to
one. Moreover. it permits one to present matrices G, {9} explicitly. To do so we introduce
the parameter r = {v— [)n which is equal to 0. n. 2n and 3# (v = 1, 2. 3. 4) and six circulant

matrices BF k= 1.2...., 6. of order n. Each matrix contains only n different clements
y
by bt b, .. we call them the basic elements:
r B
hi.. h._, b,..
1’7::¢r bi+r bn~$¢-r
BV = (1o
N h:+r hl.r h|»~r _J
’— hl,&r hu»r hj*r
R ]’:u /7\w /’s»r
B = (I
/)nbr /)n Fvr hl-r
by 1 ha 10, by,
l)l&r heesr f’\"
B = . (12)
b v L oL, M,
L B
- -
/’ur; blw‘ /)n 1er
by ] b, S R
By = (13)
L /)lt/ h)rr B /)n~r ]
r -
hlrr hjyr i)r).r
hs,, hi.. bi..
BY = - : {14)
hurr l’[vf h/v | »r
,):rr ‘h‘_-r hu‘r hlvr
bj;., f74‘, l?;&, hln- ~
B = (1%
hl»r h:»r hn 1= /7Hf7
L

r=0,n2n,3n

Matrices B'* and B'" are symmetric while 8" — B.Y arc finite Toeplitz’s matrices.
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Substituting symmetry elements g, .- jn'
Buwr =Gurirovme B=1ooo00 n, v=1....p=h'n, r=(-1in (16)

we obtain six circulant matrices G¥’. k& = 1.2...., 6 and use them to write down the explicit
expression for matrices G, (9):

Gw(Cn) = {G‘()S)}h=n (i?)

G(OS; G{S)
G(S:) = '—a':,"*w— (18)

G(OSO GLS)
GACw) = W——E‘(T’“ =G.(D,) (19)

G("ﬂ G( 1]
Gn-(Cnv) =} (20)
GLS} G((;“

N dh=2n

5 5 i i1
G‘U ' GE! ' G{:Il’ G \:

(B} $) i th

. Gn G(ﬂ G(_\n) G 2

G (D) = an

G(g’} G‘;f,’ G(' ,t) Gﬁ. ]

S $) = {1}
G (Xﬂl Gll’l: G it ' G g

L d b=

{5 {h 5 {4
G i Gn G n G 3n
(s th (s h
Gn ' G 1] G .\u) G n 5
Gu(Dmi} = (2..)
oy | aw | av | G
b
Gy | G9 | G | Gy

b dh=an

For n = 4 these matrices are presented in full in Table 2 where an integer j stands for
a symmetry operationg,, j = 1,..., A Matrices G, (C,), G.(S.,) and G (C,,) are symmetric
which indicates that groups C,. S, and C,, are Abelian, groups C,,. D, and D,, become
Abelian only for n = 2 while D, is non-Abelian regardless of n.

Equations {17)-(22) may also be writicn in the form

h
G, = Z P(g:)g. (23)
ket

where P(g,) are special permutation matrices of order 4:

Plg.) = [l’,,(gk)]’;.l-l = {(sk,u-(;.:l],;.i-l' (24)

Here 6, ., is the Kronecker delta and an integer w(//, i) is defined by (7). Non-zero elements
of matrix P(g.), which are equal to one, indicate all pairs (/, i). such that g;g, = g, where
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Table 2. Matrices G,. n = 4
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Table 3. Matrices P(g, ... )

B R C B 0. Ptz it
css h u=l,...n u=l...n =10 s=1...n
1 C, n j“ NOTE_: i
Ly ] 1
r j j n+1-u 1
2 |s, | 2n Ll _ _“} e - bt .
. J u-1 )
L u-1 M L Ia L Ju
M3, J
3|lcy| 2 i — M 1 r 1]
J“ y N H "
- - 3, = [, =
c . i A
- [ ] [ ] 4] L o g U .J
4-5| AND 2n IS - 2 - o
o, L 4 | L % ) Jy =y = 1,
A Kir ~ 1t{r 1
Ju ‘,u r Ju Ju
J, 3 4 J
6 | D, 4n & £ - M _ o
4 i J
L ol L Ju 1L du 1L J
- sl 2 . ~ |~ -
Ju Ju Ju Ju
j J J
710, | 4 S du 4 C
3y 4, 3, 3a
L Lt Lo L din JIL % ]
k is fixed. Rewrite (23) in the following form
n p=hn
—_ P
Gu - Z Z I(llll v I)u).l/u»lv bine (25)

g1 v=1

Permutation matrices P{g,, ., . 11,) are depicted in Table 3 for all seven cyclic groups.

4. SYMMETRY MATRICES

4.1. Introduce another set of & permutation st x i matrices

Q(‘//) = [‘/lk (.‘//)]ﬁkal = [‘).k.u(l.l)]:’.ka I- (26)

Non-zero elements of Q(g,) describe a sequence of the primitives S; = S,,(,,, of a finite
symmetric system S which will coincide with the primitive S; (/ is fixed) of the identical
system S” when its fundamental primitive S successively coincides with all Si(i = 1, ... h)
of §. Thus matrix Q(g,) can be treated as a special form of presentation of the j-th row of
matrix G, (9). Since the whole set of matrices Q(y,), j = 1,....h is isomorphic (i.c. in a
one-to-one correspondence) with the matrix G, of the FSS, it is proper to call Q(g,) the
symmetry matrices.

4.2. Symmetry matrices are not necessarily symmetric. In fact, ¢,(¢,) = S,y # 0 if
9« = 4,9, while ¢,,(9,) = 6,.u # 0 if g, = g,g. Hence the reciprocal relation g,(g,) =
4elg,) simply means that g, = g,9, = ¢ ¢, : that is, that g = e. Thus matrix Q(g,) is sym-
metric if and only if g = e, j=1,... A

Notice the following properties of symmetry matrices Q(g,) :

ql,(g/)=lw j=l....,h
Qg)) =1,

h

Yagulg)=1. iik=1,....h (27)

i=1

Symmetry matrices corresponding to the CSS are shown in Table 4.
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4.3. Table 4 is very similar to Table 3. However. symmetry matrices Q(g,) are much
more interesting and important than matrices P(g,) of Table 3 because they possess the
fundamental properties. To study them we have to introduce the notion of the group
representations. It is said that the set 4 of 4 nonsingular n x n matrices 4,. j=1..... h,
form a (matrix) group under matrix multiplication, if these matrices satisfy the following
group postulates : (1) closure : product A,4,(i.j = 1... .. #1) belongs to set A, (2) associativity :
A(A,4) = (4,44 . k=1,... k). (3) existence of the identity: 4, = [,. and (4)
existence of inverse matrices: 4, ' belonging to 4. Such a matrix group is called an
n-dimensional representation of (abstract) group G = (g, }%_ if matrices A, are in a one-
to-one correspondence with elements g,. i.e. if 4, = 4(gy,) and

A(g)A(g) = Alg.g))

Alg) =1, Alg ") =4""(y)
ij=1...h (28)

Furthermore, if there exists a matrix U such that
U'dg)U=T(g). j=1.....h (29)

where T(g,) are block diagonal matrices of the same configuration, then the matrix rep-
resentation A is called reducible, otherwise itis called irreducible. Denoteby ¢, r = |, .. H,
the r-th irreducible representation of group G = {g,}" . [t contains A unitary matrices (we
consider finite groups) of order n, :

() = [y ep—yo r=1 0000 j=1,.. ./ (30)

Elements 1,,4(g,) are the roots of unity. If dim (= n,) = 1, 1,(g,) = Tadg). =1 h
In such a case the second and third subscripts may be omitted. Let us fix the index jin cqn
(30) and caleulate the number of clements 1,,,(y,) of all irreducible representations. Since

a ff=1 . oomoandr =1, H itisecqual to Y 07 In accordance with the Bernside's

Table 4. Symmetry matrices Q(y, . 1)
o | Tree [marrix atg,) Qlg,,p) Qlg,42,) Qlg,.3,)
css n ue1,..n unt,..n u=1,..n u=1..n
1 c, n 9,
NOTE:
n - 3
] 3
u “
2 (s, 20 - — | ‘
L “ ] # J N+ 1
J, - [ =
, © c
r I’ r . lu~‘ l .
3lent 2o - - n y
L H <+ - d e
C Jl - In
™ J“ JM
4-5| AND 2n n
o de2p L2
n
B 2 N
JU JU JH »
JH JH JU JL‘
8 o} an
o Fnez ez s un-zu Moz
sz | | T JIL Preza J{ 2w ]
, . 3l N
( JH [‘ Ju JU M
0
7 D an valu J..-z.y Ju.ry nelu
n Ju "u Jw' Jw‘
Jn-uj L Jit Haezs J ;‘m“ J
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theorem (Falicov. 1966)

H
Y nl=h 3

r=

Hence H < h. In fact H = A. if and only if, all irreducible representations are one-dimen-
sional:n.=1, r=1..... H. Since j runs from | to A, it follows from (31) that the total
number of elements of all irreducible representations is equal to 4°. They may be grouped
so as to form a special Ax A matrix U in which the elements of each one-dimensional
representation establish one column while elements of a n,-dimensional representation form
a set of n” consecutive columns. Each column of U is normalized to the unit length and
(n,;h)' * is the normalization factor. Thus if t, is one-dimensional, the corresponding column

of Uis
= (/M (g0 (Wt ()] (32)
if 7, is n,-dimensional, it forms columns t, . U, (2. ... U200 U220 ... U,, , and column u,., is
uly = [ /) “1..(g).. ... (/' 1..(g0] 2y =1,....n,. (33)

It should then be evident that the /i-th row of matrix U consists of the elements of all
irreducible representations corresponding to the symmetry element g, :

u, = [ l/\//’)ﬁ gy (MY 2, (9] P=1 A (34)

Therefore, matrix U/ may be written in short as

", 12 hH
U=l = [( /,> (SER) 0 0 (33)

In this notation subscript s is associated with three subseripts r, v, 20 s < (r72). When 2
and y run from | to n, and r from | to H, subscript s runs from | to /1 in accordance with
(31). Matrix U corresponding to group Dy, is given in full in Section 6.

Matrix elements 7,,,(g,) of all irreducible representations of any group satisfy some
orthogonality relations (Hamermesh, 1962 ; Falicov, 1966), in particular,

H ",

n, - .
h Z rr:/!(.‘/l)rn[!(.qk) = 61k‘ i k = l- e ch (36)
2ff= |

r=|

where 1,,4(¢,) is a complex conjugate of t,,4(g,). Henee matrix U is uninormal
U'=U"=("
(symbol “H™™ means Hermitian transpose) and

H.h

ot =[l4)ie., = [(;{) .[[fr;-/f(gk)];'{- i |] . (37)

rk |

The irreducible representations of point groups are known, their dimensions satisfy the
inequality: | < n, < 5. The irreducible representations of groups corresponding to the CSS
are one- and two-dimensional only, and arc given in Table S. By observing this table, one
may conclude that Abelian (or commutative) groups C,, S,, and C,, have only one-
dimensional irreducible representations, while representations of non-Abelian groups C,,,
D,, D,, and D, are both one- and two-dimensional.
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Table 3. Irreducible representations of groups C,. §.,. Co. C.. D, Dand D

i a . ONE DIMENSIONAL 1RR REPRESENTATIONS T TWO DIMENSIONAL IRR REPRESENTATIONS
- | amoup OROERT 3 = T ELEMENTS OF ¢ ; g T MATRICES OF 7,
" zxl - T ] : T
. | ;3‘ v : ' et ' (L RSN Rl WPTYA ROl ISP [ Iorpigy, Vi3 en T',W‘_‘.z")]',ig_,]"‘g
2! | P I P R A ‘ f.l-v LR IS A
1 C o | ANY ' - 1 i | :
n [4 n - : + NOT . PSS
A " bl ' OTE -_]-nnhmem P |
2] s, | oz lawv' . {1 zai .o ¢t
2 i i : ; u- u-% 0 r f 1
i . Ty . ] . i P i
; ! RS B T . s ” !
3 Con In | aNY . ot ' £ €t 7 ;
; | ™ G ; {‘““2 | i
! oy n BN -4 3 :
! i
| i oo 1 1 I !
f ! 1 : ;
. ' 1 i
i 2 1 i
c TEVEN 1 [’ et 1 2] € & |
v | i ° | R et 2 w1 g u-t {
4.5] anp g P2 : : i i
i M - v H H H
s T § ot B T : i
D, ; : i |
5 H ; - ;
Co ! v | ;
: oo i ez nz‘ e, e | )
{ “—; T, b e i
[ 0N 1 ] 1 1 1 i
r__ﬁ_.{ USRS SO GOSN U H
’ : 7y v 1 - ~1 i :
i N r L] 1] I3 T
i 4 —_ U SN o8 1. 2t E € HE 3 £ !
I f - f ! i ' _ z w1 u-y % e} w1 :
| 2 L L i i
; ¢ {_ N [ B 1 :
i EVEN S S N - S— R |
| o TR RN TCAL IR TUA A BV SR TCa ! |
1 s [ Fe i S T I 11 (R i f i f
6| O an . {re 3oy Saf €0, 0 &L uE ro
" e G e Lot e ? ! s e By
I | i |
{ ‘a F35 TR B H o IR I ‘
| ASDENSU SE N S e FRVORRIRPURY SN SO - - 4
! P 1 1 1 : i :
; ! , Al e e
D RN a1 ’
I 1 -1 y " 2 Eu L) Ea t iu i E,z H
— * - i i
UG A ISV S ESRP SU— PNy SR——
| [ ' ¥ , .
e N . | G L n ¥ ' ' r
\ * \ 1 ) ! 2 Eu 1 ‘u i | E. 1 B 1
SR SO S . .. - . RN AU b U S
" i 1 B N
e e - v - ! ‘
I ' [ ? : !
EVEN ey B RIS SRt TE IS LRCIRT B N o, L A
! " 1 1 1 | !
|
| e R NN :
i ; ot 1 ' 1 1 : i
T i S St S SR SRR IR o [N S— - H
et [N [ 1 ' ; i ;
I 1 n L r . o f r
- ; ; - ; 4 20 Byt 1 €y s £ .
H I
oo L«*“ Aanemunt Conin dial et K e
N 1 1 1 ; i
H o " I3 ’ I3
I ¢ '
i “ oo -1 ' 7y H v Eu‘a E2 o
P S i - {

4.4, The following two lemmas present the fundamental properties of the symmetry
matrices @y, ).

Lemma 1. Matrices Q(g,), j = 1.....h. comprise an A-dimensional representation ¢J

. e b, 1
of group G = (g, 1, .1-

Proof. First, according to (27). Q(g,) = ;. Sccond, consider a matrix product
Q(9.)Q(y,) for g, and g, belonging to G:

i i
QgQ(g) = | Y 4.(9)4ul9)
I th =1
h h
= Z d/.)t(\.l)dk.w(l.l) = [‘sk.w(t.w(x.n)]?.ks]
i-1 1Ak =1
because

: I b= w(s. i)
Oy = }] ()[hEl'W’iSC-
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It follows from associativity of the triple product

9:9:9« = (9.9)9x = Gui¥x = Jurwiipiio

= 949,90 = 9.Guiinr = Gutini s

that
w{i, w(j.R)) = wlw(i, ) k) Ljik=1..... h
and therefore
Q9009 = enintemn)ik=1 = (il Guera) i =

= QGuen) = Q9,9 st=1.....h (38)

which means that @(g.)Q(y,) belongs to the set Q. This equation does not contradict (28)

because matrices of the group representations are conventionally written in a transposed
form so that, for example, a matrix-vector product is written as x'4. Therefore, if we

denote Q(g,) = 4%(g.). s = 1,....h, then (38) will take the standard form (28). Next, let
¢g. beequalto g '. Then Q(g9.)Q(g. ") = Q(g,) = I, and
Q0 (9)=0Q(¢. ). s=1...., h. (39)

Finally, [Q(g)0(9)]0(g.) = Q(y){Q(g.)0(¢.)] by the associativity property of a matrix
product.

O

In tact, symmetry matrices Q(g,). j = 1..... h form a special reducible representation
of group G = {g,}1., known as the regular representation (Falicov, 1966). This follows
from

Lemmia 2. There exists the explicit block diagonal decomposition of matrices @(g,),
F=1,..., It

Qly) = UT(g)U". j=1.....h, (40)

where U and U" are defined by (35) and (37), respectively, and T(g,) is a block diagonal
unLary matrix

iy

T.(!],))

—~
n, times (g

T(g) = N ), @0
n, times

lyg,)

\ tfl(grz,

-

n, times
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or in short

T(.‘/;) = [[fr(g/)dx/;dr:]:f/x= |]?;= 1. j= Lo h. (42)

Proof. Equation (40) is the matrix form of the following orthogonality relation
H .
Z = Z rr,‘x(g:)fn/i(!//)T.r-,-u(!/k) = ()k.u(/.l)' i- ,/’- k = 1 ----- h (43)

which generalizes the identity (36).

O

Thus besides the uninormal matrix . A° matrix elements 1,,,(g,) of all irreducible
representations of group G form 4 block diagonal unitary matrices T(g,) and all of them
satisfy eqn (40).

S. MATRICES INTRODUCED ON THE FSS

5.1 In constructing matrices corresponding to the FSS, we must obey the special
symmetry law [derived fromeqn (4): S, = ¢,5,. j = |..... /] which states that we are free
to introduce the mesh and all variables and functions on the fundamental primitive S, only.
The mesh, variables and functions associated with the primitive S, must be obtained by
applying the symmetry operation g, to the analogous characteristics of Sioj= 1. .. It
is convenient to present all matrices introduced on the IFSS in a block (partitioned) form
associating the blocks (submatrices) with the primitives. Let A, be such a block matrix.
Then it is of order mh and its blocks A, o A =1, /v are of order m. where /s the
number of primitives and m s the total number of varables (for instance, degrees of
freedom) of any single primitive

/'... = ["":A]f'.k = [["/Anrl:;’,:» |]:',A -1 (44)

Theorem V. Matrix A, (43) introduced on the FSS has the following presentation :
h
Ay= 3 Qg)® Ay, (43)
;-1

where Q(g,) are symmetry matrices (26), Ay, are blocks of the first block row of A, und the
symbol @ stands for Kronecker multiplicationt.

Proof. Once again we consider two identical FSS, namely, §= U7, S, and § =

U'.,S; and coincide them so that S =S, and §; = S,,,- Suppose that matrix A4, =
(4,14, . corresponds to system S while matrix A, = [4,,],., o §". Then
A= Aupnwons Poi=100 fi,dis fixed.

On the other hand, A, = A, because both systems are identical, hence

A=y poj=10h

it

+1f Band Caretwo arbitrary p < g and r < s matrices: B = [h, 70, and C = [¢.]; 210 then 8@ Cis defined
as the following (pr) x (¢s) matrix (Bellman, 1960 Marcus and Minc, 1964):

B®C=[hCloy = [hac 100 (46)
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Thus
Aﬂl = AMp.i).u‘t Jaye

Letting p = 1| and noting (8). we have 4, = 4,5 Or

Multiplying both sides by J;...,, and summing up with respect to j from | to h. we obtain

h

h h h
Z Al/‘sk.nu.n = Z A Z 5\.---«/,:‘)(5k.u-u.n = Z Aibu = Ay

=1 y=1 =1 s=1

Or. by virtue of (26).

h

Z ‘]:k(g,)AI,. & k =1,.... h. (47)

i=1

AI/\

Equation (45) follows from here in accordance with (46) ; we call it the Structural Formula.

a

Remark. According to the lust eqn of (27). there is only one non-zero matrix term on
the right side of (47) and this term has a scalar factor, say, ¢,(g,,) whichis equal to |. Thus
eqns (45) and (47) mean that every block A4, of matrix 4, is equal to onc of its blocks
located in the first block row: A, = A4, . where j, = ju(i, k) is determined by the symmetry
matrices Q(g,), j = 1,....h Blocks 4,,(j = 1,....h) will be called the basic blocks of A,
and the first subscript will be omitted: 4,, j=1..... A

5.2. Matrix 4, (44) may or may not be symmetric regardless of symmetry of the
corresponding  mechanical system. Matrix symmetry follows from reciprocity Liuws
(relations) for corresponding quantities or cquations, and any symmetric block matrix of
order mh contains not more than mh(mh+1)/2 distinct elements. Symmetry of the mech-
anical system leads to the Structural Formula (45). According to (45), associated matrices
have no more than m*h different elements belonging to its basic blocks. If such a matrix is
symmetric, then its basic blocks 4. 4,....., 4, are divided into two parts: blocks of one

~ part are mutually transposed (A, = A"), while blocks of the other part are symmetric (self-
transposed), and the total number of distinct elements reduces by half.

Matrices 4, (45) may be written explicitly. First let us replace the basic elements
b,.. in the first four circulant matrices B!’ (10)-(13) by basic m x m blocks 4, , .y, of
matrix A, (44). r=(v—=1)n=0,n,2n, 3n:

[ A | A | ] A ]

A = Aper A, An 1 r (48)
| Ay, Avs, Ae, |
A | | ] A ]

4 = A | Avy, Ay, (49)
SR e R e
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U DT R R
1 Ao A, L A
AN = (30)
.{v {~r '4:1 I ~4r1-r
A, AL, = S
Ao AL I
AN = (51)
tl},,, 44:»r "Lx»r

r=0.n2n3n.

Then, by substituting symmetry matrices Q(g,) of Table 4 into the Structural Formula, one
can verify that matrices A, (45) have the following configuration:

A JC) = [A ], (52)
. f"(u“ "':,“ 53
S =) — (53)
o oo ‘I"II
[ f“n“ ""n“ ] .
/' *((nh) = TT (34)
, Ay

AJNC) = A(D,) = (55)
N
[N} th th h
‘41) “‘/l f‘ n ‘.l n
A‘H» A(I) "'1“ )’(I)
“An i} ELR Y] ERI]
AAD,) = (56)
. uh
i t t ()
A A Ay "‘n 4":1
[} (2 (] (]
AL A A Al
L damn
oh (B8] h h
Ay A, Al A
t2) 2y [} [RH]
. A A A A 57
-~ ml) = . ~
[R1] 4y (h th
A ALY Al A
2 (4] [ (M
A A, A Ay
L d s

More detailed symmetric matrices 4, are given in Tablc 6 for n = 4. Symbols S and T in
this table state that the corresponding blocks are symmetric or transposed. respectively.
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Table 6. Symmetric matrices 4 corresponding to the CSS. n = 4
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A.(C,
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NOTE N ALL MATRICES INTEGER ; STATES FOR 8LOCK A

5.3. Consider the spectral properties of the Structural Formula (45)

Theorem 2. Matrices A, (45) have the explicit block diagonal decomposition

Ay=UANUY, (58)
where U, is uninormal
U‘ = U® [m = [”u{m]‘l’i\—- R b’:‘ = UH ® i," = [ﬁ.\k m]i’.k- 1+ (59)
A, is block diagonal
/,
A, =Y T(g)® A4, (60)

j=l

and matrices T(g;), U and U" are defined by (41)-(42), (35) and (37), respectively.

Proof. Kronecker's matrix product possesses the following property (Beliman, 1960 ;
Marcus and Minc, 1964): if 4, B and C are pxp matrices and F, G and H are gxq
matrices, then

(ABCY® (FGH) = (A® F)BR®GHC® H). (61)

Hence, if matrix B is diagonal or block diagonal then matrix B® G is also block diagonal.

8A8 27110-0
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Therefore introducing (40) into (45) we obtain the block diagonal decomposition :

A* = Z UT(QJCH ® {[m“izfm)

=1

A
=(U'® [,,,)( Y Tg)® A,)(UH ®1)=UAUY

=

|
Remark. In accordance with (41), block diagonal matrix A, has the configuration :
Ay
A
et
nytimes A,
Ay = \ Ay . . (62)
M, times
Ay
A
5 14
Hy tines
where
h h "
A=Y tlyg)®4 = [ Y r,,,;(y,).»f,] Cor=1...H (63)
71 IR 2 fi-}
or
h
A = {An/i]:f/x- P Arx/i = Z Tu/t(.‘l,)f",. r=1.. 0 H (64)

r=1

Blocks A, are of order mn,, m < min, € 5m, and submatrices A,,; have order m. In short,
matrix A, may be written as

Ay =[ADS, 8 il (65)

x
oreven
A* = [H/\m/ds;u‘;m]’z’fﬁ - |]va- :]rl,’A w e (66)

Thus the majority of the FSS eigenvalues are at least of n-fold. | € n, £ 5. In particular,
the CSS possess double eigenfrequencies and critical loads.

With no loss in generality, we assume that matrices 4, (45) arc real. Then if A, is
symmetric, the block diagonal matrix A, is Hermitian: 4, = U AU and A, = 4, =
AY = U AU hence Al = A,

Consider now Theorem 3 which states that all operations with matrices corresponding
to the same FSS preserve the Structural Formula (45).
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Theorem 3. If A, = Z'., Q(9,)® A, and B, = L. ,Q(g,) ® B,. then

A
A, +B, =Y 0(g)®(4,+B) (67)
j=1
A
AB, =Y Q0(g)®C =C,. (68)
i=1
h —~
A;'=Y Qg)® A, (69)
j=1

Proof. In accordance with (45) and (47),
d b
A* = Z [qtk(g:)A/]ﬁk- Ts B.‘ = Z [qik(g[)B;]ﬁkn I
j=1

i=1

Hence,
3 h
A+ 8, = Y [galg XA, +B)ler = Y Q(g) ® (4,+B).
=1 j= 1

Next, we consider a matrix product. Invoking (38), we have

h I
Co=A,8,= ( Y 0(g)® A)( Y 09)® 3,)
sl tw |

h &
Y 0(9)0(9) ®AB = Y Qguun) ®AB,

s fw l si=1

I

h

h h
Z < Z Q(gw{m;) ® A,B,) = z C:)
1= Yyl

vl

il

where

G
C‘r) = Z Q(gw(!.s}) ® A\B."
r=i

Thus €} is described by the Structural Formula. Since a sum of such matrices also possesses
this formula, eqn (68) is proven. Let us find the basic blocks C; of C, = 4,8,. Denote
blocks of C}' by Ci'yi,j = 1,...,h Then its basic blocks are

L] L]
CI“) = C‘i‘[’ = Z ql/(.‘lu(l..ﬂ)AsBl = Z ‘sj.w(u‘(r.xl,l)Aan J = l‘ .. .‘h.
(TR -1

Since wiw(r, s). 1) = w(r. w(s. 1)) = w(z. 5}, we obtain

I

C=Y 8und,B. j=1,..h
=1

A single non-zero term in the right side is determined by w(t, 5) = /. i.e. by g,9. = g,. which
means that 7 = 1(/, 5) and therefore

C;‘;} = A.ijl.\')v j = lt e qk

where j(5) is defined by the matrix G,.. Hence, the basic blocks of matrix product C, = 4,B,
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(68) are

h

h
C=YC'=Y A4B,.. j=1... h. (70)

vl v

Finally, the existence of egn (69) simply follows from the Structural Formula for non-
singular matrix 4. and our goal is to compute basic blocks 4. j=1...., h. of the inverse
matrix 4, '. To this end, matrix 4, ' is presented as a triple product 4, ' = L' ,A, U} and
in accordance with (60) and (65).

13
=Y Tg)® 4, =[[A '6,0.0. 1. (71)

1= 1

Assuming that blocks A7 r=1...., H are found numerically by inversion of blocks A,
(63). we present them in the partitioned form (64)

I = [‘erlf]::,'! = | (72)

and propose that similar to A, (64).

4

ﬁ,,,; = Z Lol =101 r=1... H. {(73)

i-1

Then multiplying both sides of (73) by (n,/I)1,,,(¢,). summing up with respect to x and f#
from | ton, and r trom | to #, and taking into account the orthogonality relation (36), we
obtain

LTI i n "o ho -
2 }_ﬂ /\n[:fu;» gi) = Y 3, L Z Tl ) pla) = }_‘ ;0,& = A
,.;h 'S st -t xfi -1
Thus
Hoy " ‘
A = S" ’ S_‘ A aTenly)e F= o h. (74)
e /I r[t— 3
=
d
Remark 1. Basic blocks C, (70) may be written explicitly:
n  p=hn
;1+h D = Z Z ) +lvy l)anv‘w (73)

iyl vy =)
=10, v=1...,p
subscripts m, . which depend on v, arc depicted in Table 7 for all CSS.

Remark 2. Equations (68), (75) and (69), (74) arc very efficient in computing the
radiation matrices (heat transfer problems).

6. SOLUTION OF LINEAR FEQUATIONS INTRODUCED ON THE FSS AND SYMMETRY OF
THE APPLIED LOADS

6.1. The explicit block diagonal decomposition of matrix A, (45) given by Theorem 2
leads to substantial simplifications in the solving of lincar equations corresponding to the
FSS.
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Table 7. Basic blocks C, ., ), of matrix C, = 4 _8
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c n_ pzh/n A 8 u=1..n
-
+{v-1)n +y,—tin"m
-1 #y=1 ve=t Bt -1 1 v=1..p
GROUP | p "‘u, C“ C“,,n Cu*zn Cp+3n COMMENTS
Cn 1 my =iy
my = i i, +n
San 2 , l Mepy+ T, F gep 120
=i +n . =
271" h ! By + 14, OTHERWISE
m, = i‘ iy+n
my=li,+n iy
Chy my =iy ip+n i ,' B+ IR pew +1>0
2
AND 2 u,-uﬂm, OTHERWISE
Dn m, = 52 +n i2
my =] i iyt n iy +2n iy +3n
m, =i, +n i iy +3n iy ¥+ 2n
2 1 1 1 1
Dnh 4 - Hepy, W pep, >0
o R . P n 2
my =1 i, 2n iy 3n iy iy ol #0, OTHERWISE
my . i2+3n iz+2n i2+n iz
m, = iy iy+n iy + 2n it*3n
my =] i, +n iy ig*3n | iyt 2n - ’ Hy-H, W g -p >0
Cnd 4 ) ) ; . Hy-H+n, OTHERWISE
my = 13+2n 13+3n iy iy tn
my = i2+3n i2+2n i tn i2

Theorem 4. A system of nih linear equations

A‘xt = bt' ‘t# = ['xl]:" by b* = [bklz- 1]

(76)

defined on the FSS with symmetry group G, is divided into H uncoupled subsystems of order

man, (1 < n, £5), each containing n, unknown subvectors y,,
Avacoo o yml=leaenl r=1,.. H

where A, iy determined by (63)-(64) and

"P

h
¢ = (m/h) 3{ Z bkf,,,,(g*):l Cy=L.o.on; r=1.... H
k=1

et

Once subsystems (17) are solved. the initial unknowns are found from

Loin NG n .
X = Z W Y aatea(g). i=l ok

ro g Tax=l

where v, belong to subvector vy = (v..)r. y=1.....n,.

(7

(73)

(79
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Proof. Substitute (58) into (76) and then premultiply the result by U39y
AU, = U,
or

A Ve = Cyn (80)

x
where

o= Uhe =1l )0 (81)
Subvectors ¢, are calculated by (78) in accordunce with (37) and (59). and
v, = Ulx

w Ve = [[_1',-,]’,'1_- !]rH: i (82)

Written in full, system (80) has the form

= _ - T r B
A L Cry
/\| _"],,, ('|,,I
mytimes AL Y €
= (83)
/\ N l",, [
D Yo, n,
nytimes B
Ay Y Crr
%/_Ay, Ytin,, Cin,,

1y, times

and may be presented as (77). Having obtained solutions of subsystems (77), once shall
compute vector x, = U, v, whose subvectors are determined by (79) due to eqns (35) and

(59).
O
To estimate the efliciency of this method we compare 1t with Gaussian elimination, the
standard widely used procedure. To simplify the problem, we assume that all of the matrices
under consideration are of a full scale. Denote respectively by M$ and M$ the number of
operations (multiplications) and storage requirements for Gaussian climination, and by
A and MY the analogous quantities corresponding to the symmetry approach. Then
MS ~ iy, MY ~ (mh)*,
while
MY ~mth, MY~ mth

Hence the efficicncy of the symmetry approach can be described by two characteristics

N,o= MM~ and N.= MM~ (84)
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6.2. The efficiency of the symmetry approach depends on symmetry of the applied
load. Although hitherto nothing was said on this. some assumptions have already been
made by default. To reveal them we divide the whole set of the applied loads into two
subsets {which can intersect): the active and the parametric loads. We define them with
respect to their locations in matrix equation (76). The active loads are located on the right
side: they form the load vector 4. The parametric loads occupy the left side of (76) ; they
participate in the formation of matrices. hence, they are inertia, damping. gyroscopic, and
circulatory forces. thermal loads, etc. Some of them such as thermal loads, for instance,
may be parametric and active simultaneously. In accordance with Theorem 4, matrix A,
of eqn (76) corresponds to the FSS with group G. This group describes symmetry of the
system, i.e. symmetry of its geometry (including supports) and materials. Since matrix A,
also depends on the parametric load. it was implied tacitly that the parametric load is
symmetric too. Morgover. it was assumed that its symmetry is identical with the symmetry
of the unloaded system. Evidently, this is not necessary. Let us denote symmetry of the
unloaded system by S, and symmetry of the applied parametric load (loads) by S.. Then
the actual (total) symmetry of the loaded system is defined as the intersection of §, and S,

S=8N8§.. (85)

Hence. the loaded system will be symmetric if §, and S, have common symmetry elements
axes and/or planes. Ttis useful to note that the intersection of two congruent axes ¢, of §,
and ¢,, of S is not necessarily a symmetry element because axis ¢, = ¢, N¢,, may have
order one. Axis ¢, will be a symmetry clement of S (85) if n = ged (n,. 1) > 1 where “ged™
means greatest common divisor. Let G, G, and G be symmetry groups corresponding to
S S and 8, respectively, and by and Bbe their orders. Then G is a common subgroup
of G, and G, not necessarily the largest, and & < ged (4, /1)), Tt is convenient to treat §
as a4 composite system containing two subsystems ©a real §) and an imaginary 8, enclosed
into §,. Then cach primitive of § consists of 2,/ primitives of ) and of Ii./h primitives of
S, In fact, the primitives of S are

o= (S0 j= ke = (86)
They are subjected to the puramcetric load distributed along S, in accordance with

(hy/M)S 7. All of the FSS composed of two CSS, one within the other, are shown in Table
8.

Table 8. The highest symmetry of systems composed of two CSS

s, 32 an San anh anv Dnz Dnzh Dnzd
Cn1 Ca*l Ca Ca Cn Ca Ca Ca
sl'n1 szn Cn cn cn Cn szn
Cn1h cnh cn Ca Coh Cn
cﬂ,' cnv cn Cnv cnv
Dﬂ, Dn Dn Dn
B, h SYMMETRIC Db | Cov
Du,d *n=gcd (n,, n,) D 4




1238 S. DiNKEVICH

6.3. Theorem 4 imposes no restrictions on the load vector 6, (76). hence the efficiency
of the symmetry approach given by {84) is obtained for a certain nonsymmetric active load.
However, if the active load is symmetric and its symmetry ts identical with the actual
symmetry of the FSS, the load vector &, consists of h identical subvectors

by=-=b,=b, (87)
Substitute (87) into (78):
I
. = (n/h) :( X fg»/{{gfk))bs_)~ (38)
k=1 /

Assume that the actual symmetry of the FSS is. for example. C,. Then one can find trom
Table 5 that group C, has / = n unitary irreducible representations t, with elements

talgd = o0 (g) = tlg) =6 =explirthk=D2nm), 1= —1

re=ll., H=h=n

Since

i

2 Toalus) Z exp{—irthk — )2njn) = no,,
k-1 k-1

we have in this case

By 2= by, r=1 H=h=n

Henee, vy = - =1, , = 0 while v, is determined from
A /
Ay, =0, where A, =Y A and ¢, = Jhb,. (89
1> 1

It follows from here that vector x, = U, y, also consists of & = # identical subvectors
Nyp= = = (1 (90)

Since it was required Lo solve only one subsystem (77) and it is of order ., the efliciency of
the symmetry approach increases /1 times:

Ny ~nh' and N, ~ 07 (9h
This result may be generalized. Let us present the load vector b, defined by (87) as the

folfowing Kronecker product

by=v,®bs=1}""1 . (92)

where

P T . (93)

Each group has a one-dimensional irreducible representation consisting of / positive units:
t.lg) =1, j=1,....n ltiscalled the unity representation. Observation of Table 5 shows
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that the unity representation of groups C, and C,, is 1, for group S.,. 1.(g,) = 1..{g,) since
e 1.2 = |, regardless of u. Finally 7, is the unity representation of groups C,,, D,, D,, and
D, Clearly 7, can be given by r, (93). Hence eqn (92) simply means that the active load
follows the unity representation : if the active load has a symmetry group G, then it follows
the unity representation of this group, and vice versa. The most common case in symmetry
of the active load is that in which the load follows an irreducible representation of a certain
subgroup of group G describing symmetry of the loaded system. Such a case will be studied
in the next section. Now, for the sake of simplicity, we will consider a case of the active
loads following the irreducible representations of a particular symmetry group D,,. and we
assume that the actual symmetry of the FSS is also D,. Such a system is shown in Fig. 1.
It possesses four vertical (¢l".....0.") and one horizontal (a,) planes of reflection. the
vertical principal axis ¢, and four horizontal axes ¢\"....,c%". System D,, contains
i = 4n = 16 primitives.

Let A, be the stiffness matrix of Dy, ; then it is real, symmetric and has the following
configuration:

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4, s A, Ay Ay |
4 A Ay: Ay Ao Ay,
A, As A Ay Ay Ay
A, A Ay Ay I
A, Ay Ayl ds Ay
A, Ao A Aps Ay
A, Ave Ay Ay Ay
A, Ay A Ay A,
AfDa) = A, A (94)
A, A
A, A,
A, A
Ay
Al
A
SYMMETRIC ——]A,

it is completely determined by six non-zero m x m basic blocks A4, A5 A, A Ay and
A . all of which are symmetric in accordance with Table 6.

One can find from Table S that group D, has eight onc-dimensional irreducible
representations 7y,..., ty and two two-dimensional ones, t,and t,,; sce also Table 9. Using
them we build matrix U (35) whosc construction was described in Section 4. It is given in
Table 10. Now, if the active load follows the one-dimensional representation t,, then the
load vector b, has the formt

by =1, @b,

1€rg8 95)

where «, is the r-th column of U. If dim t,(= n,) > I. then there are n} active loads which

tNotice that b= (n,/)""%,. where
boy=u @b =(n/ t,®band b =0, @b,

by corresponds  to egn (92, It follows from

BAS I7:10-C
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15 3
4 14

_ %l A4 11 7 7

T 2
h 1 13 10

m
< SN ) 6
\J 2 5 9
g

Fig. 1. System Dy,

follow t,. For example, two-dimensional ty is presented in matrix (D) by four columns.
namely, wy = 1y 1, Hyg = o2 Uy = U~y dnd wy> = 1y 5> see Table 10. Hence there are
four active loads following ty:

hew =u, @h, byro =1, @b, hein =1, @b, ”...1: =u, @b (96)
fn fact all of these loads are very similar: byo=5h0 by = b, and b, may be

obtained from A, by rotation of the active load about the principal axis ¢y through 90°
counterclockwise. (Notice that loads which follow complex irreducible representations are

Tuble 9. Irreducible representations of group D,

ELEMENTS AND MATRICES OF IRREDUCIBLE REPRESENTATIONS T,
{RREDUCIBLE
REPRESENTATIONS rle,} 9,08} it .8 g, 012!
u=1234 u=12234 u=1234 w=1,234
) 1 1 1 1
Tz 1 1 -1 -1
b4 "3 1 -1 1 -1
3
& T4 1 -1 -1 1
=
W ~1
- s (-1 T {—p? =11
a
i 1 H
F4 s (- (—1H" (-u¥ -1
r (=171 (-1 (-t {-1¥
i (=1 (-1# (=¥ {(=nH-?
= IF r gy g e
€ € €. € -1
-1 u-t pet S
T
b ? _ _ - _
3 fu-1 u- u-1 €uat
@
< . pu B B b | b ~4th o
g — g g o g g -
S fut T e Syt
z
10
T Tou-t et “u-t

NOTE: €, = qup {iur/2), i= /-1
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Table 10. Matrix U'(D,)

ONE DIMENSIONAL {RN AEPAESENTATIONS TWO DIMENSIONAL IRREDUCIBLE AEPRESENTATIONS
" 7 ] i s ‘s " l . K] "o
u ' T .
T RS R RO U N N E PP R TR 1) R PAeR REE S Rl IVTL RN AR AL AR oL ) “ﬂ"'q'[“ﬂ""l\A"‘,"'V, Trazz'h!
[ 2 3 “ [ 0 7 ] ] 0 T 12 EE 15
1 ) 1 | 1
1] ; % y . S, - - i L
1 LY 1 e va e ue ve 1 ¥ ¥ iF ! | T
-
va P e 1 FRTT N PC T O RS 10N Y 4 = e -
? : . MK NI z
bad % : -
: )
3 3] ve 4 /e 1 [ 14 e [ - I .=
| iz ! 23] 1% 7
. 4| e 14 e va | ovel cne | v R ; P i 1 —
" i 7% : 77| 13 ! 73
y | A ! [ -5 i _t
1 8| v 14 | —ve | wua | va va | cve | cve | g ; s l -TF ! ¥
bt
2 | v va | v | .va | -ta | v | v e e ! JERLIN R W } —“
2.7 t 22) 217 27
PR v v ) v
1w 3 - - e te [ R : -] e 5
3 . e v 14 5 ; 31 73 | iT
4 L] va ©e ~Ye { ~ue b e -t 14 e - Lo . | L
3 Y| 7T i 7
1 9} va | —val va | ~we] wa | cvel ve | .rs JLIE - T R
77 . 11 7 7
5 - 14 Ry ~tia . -ve Y . P —
7 0] va 14 . v 1 e i3 31 3
rosnd ) e ) T 3 T 7
] v va | oove g owve | ~us | ove | —ue | we | o—ve LI FLUIGE g 15
2 T' 27 1.7 27
-
) 12| ve -va v -4 | VA 14 14 ta e e )
27! 27 27 22
t 1 t 1
' 13 ve | _ve| -va | wva va | e | -te | wa P PR 1
27 22 27 22
- ;
H wf ve -ve | -ua 14 ~Pid e e —ve e PRI | VDR S
i iT 727 IR
S L
3 23 7T R QR VP 7 O (TN RSCYPSS TP Y LI . T A% B
- -3 272 72 22
] 18] e —ud | -we 174 ~v4 | va v -1e - = ! s :
7 27 | 23] 2

not the standard mechanical toads.) The total nuniber of active loads which can be issoci-
ated with all the irreducible representations of Dy, is i = 16, These loads form 2 1om x 16
matrix

By=Thaby: ... b J=U®b 97)
The corresponding system of linear equations
AKX, =8B, (98)
is decomposed to
ALY, =C,

and the 16m x 16 matrix C,. which in accordance with (81) is equal to U,B,. is of the
following form

Co=UyB, =(U"®LNUBH)

U@ Ub)=1,®b=1,,®b, (99)

that is,

C*= . ={C*IC*2"'Ct16]‘ (100)

b

Lomx 1A
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To find the configuration of vector x, we first need to study matrix A,. It has the form -

1\;
1\1

1\;

and according to (63) and (6),

/\,:

b1t

2y ®@d, =% ¥

-t FTREHR SO

A-

H =14,

Blocks A Ay are of order g we present them in the torm

A

A: oo 4
= (‘S‘;z
Ty

L
I

Ay

@ L) A,

PER

;"’,“uj

where matrices S, in accordance with Table 9, are the following:

T,(ﬂwm l})@"tu&-&(v I

[ ! ! i
1 i -1 -1

! -1 ! ~1

| -1 ~ 1 |
e e b e e e
(=t =0 =y (=1
(=t =y =ty =y
(=0t =1 = =y

(10D

(102)

(103)

(104)
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Blocks A, and A, (of order 2m) are

=4 5“ l(-"“+Au«J) gu’l(‘4u*8+‘4J+ll) (105)
Ay= YV .
Aq “‘:l E“A|(4"l‘n.x+‘4u¢ll) Eur|(‘4u+‘4u+4)
m=4 Eu“;(.{u—f!“;ﬂx) —5“,.4(.4“*_3";’1“;_{3) ) (106)
1\“)=“§| mEu—l““n*S““‘u*l:) gu—l("‘u—f‘u«bd)

Matrix 4, is real. hence

AH).H AH).!.’.

AH).ll

and Ay = (107)

Now we assume that the active load follows a one-dimensional representation t,,
| < r € 8. Then one has to solve the m x m subsystem

Av,=h 1 <r<8. (108)
The entire vector vy, (whose order is mlt = 16m) is determined by
For =L@y, 1<r<8 (109)

where £, is the r-th column of the identity matrix /, = ;4. Therefore, vector x, of the initial
unknowns is

N = U v = (U@ LW, ® 3)
= (Ui)® U, ) =u®y. 1 <r<8. (110

Clearly, its subvectors x,, .. ., X, are distinguished only in scalar factors + 1. The efficiency
given by eqn (91) follows from here. This result may be formulated as:

Theorem 5. If the active load follows any one-dimensional irreducible representation of
group G describing the actual symmetry of the FSS, then the efficiency in solving matrix egn
(76) is characterized by Ny = I* and Ny = I*.

If the active load is associated with a two-dimensional representation r,, say 74, we
have four corresponding columns in matrix B, namely, by, b, 14, b,y and b,,,. However,
it is necessary to solve only onc subsystem of order 2m

A [,u, 0]_[/) o] .
? 0 Fio a 0 5 ( )

because yy; = yoand y;, = y,q. Finally,
Yo =0, @y 9512 (112)

6.4. Blocks A, which relate to the one-dimensional irreducible representations, have a
simple mechanical interpretation. In the case under consideration A (.. .., A, can be thought
of as matrices (stiffness matrices, for instance) of the fundamental primitive S, of system
D, with eight different boundary conditions along the cut edges lying in symmetry planes

oy, 0. and ¢'”. These conditions are known as symmetric and antisymmetric (skew-
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symmetric). To define them let us assume that a certain symmetry plane P is spanned by
the coordinate axes v and = and that node A lies in P. Then the restrictions imposed on
motion of node A

u!=pl=¢'=0 (113)
are called symmetric while
W' =ul=¢pl=0 (114)

are called antusymmetric. (Here ' and ¢, are respectively translational and rotational
degrees of freedom. i = x, 1. =) According to this definition A, and A, are associated with
the fundamental primitive S, with respectively symmetric and antisymmetric boundary
conditions along all of its cut edges. All blocks A ..., A are interpreted in Table 11, The
active loads. applied to the fundamental primitive and described by subvectors ¢, = ¢,, (78).
can be treated analogously.

Hermitian matrices Ay and A, are associated with two primitives joined together and
having special complex (i.e. non-real) boundary conditions along the cut edges. Therefore.
in general, the response of system Dy, cannot be expressed as a superposition of partial
responses of its uncoupled primitives.

Finally, Theorem 4 permits the tollowing mechanical interpretation : the original FSS
composed of it primitives and containing mh degrees of freedom is replaced by # uncoupled
subsystems S" corresponding to /1 irreducible representations ¢, ¢ = |, ... /., of the
assoctated symmetry group (. Subsystem S has i, degrees of freedom and is composed
ol n, primitives of the FSS (1 <, €35). Its boundary conditions along the cut edges are
determined inaccordance with r, and may be described by real-valued as well as by complex-
valued functions. Subsystem S$* is subjected to n, special toads whose Toad vectors ¢,
7= l....o¢n are obtained by projecting the original load vector b, onto the vector space
VO spanned by mn, column-vectors w,., ® 1, (x = 1.....n,) of matrix U,=U®I,. The
response of the original FSS is found as a superposition of partial responses of all subsystems
ST r= 0o I the active load applied to the FSS follows a particular irreducible
representation t, then the load vector b, lics in the vector space . Hence all other
subsystems S, r £ 5, are unloaded and do not participate in the total FSS response. This
is a typical case in the analysis of the FSS and usually . 1s onc-dimensional but not
neeessarily the unity representation t,.

6.5, 1t is casy now to trace an analogy between the symmetry approach and the modal
analysis. For the sake of simplicity we consider the latter in the static interpretation: Let

Table 11 Symmetric and antisymmetric boundary conditions at the cut edges of the D, fundamental primitive

B SYMMETRY PLANES
i MATRICES A m
i HORIZONTAL o VERTICAL ,,:2' VERTICAL o
1 Ay=AyvAg+AgrArpt Ay A S * SYMMETRIC s s
2 | Ap-AyrAG-Ag-Ajp-Ay3-Agg s A - ANTISYMMETRIC A
3 | MtAj-AgrAgr A -A3-Agg A A A
4 | Ag Ay-Ag-Ag-AjprA3tAg A s s
- - A
5 | AgrAyrAgrAg-App Ay -A s s
6 | Ng:Aj+Ag-Ag+Ayp—-AjytAg s A s
T | N7mA1-Ag-Ag e Ay -Ag3 A A A s
8 | AgmAy-AgrAg-A, A=A A s a
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the matrix equation
Ax=b (115)

correspond to a certain linear mechanical system with n degrees of freedom. Matrix A is
real and symmetric, it has full set of eigenpairs (4. u).i=1..... n. Denote by A the spectral
matrix of A. that is, the diagonal matrix of eigenvalues /4, and by U the fundamental matrix
of A. i.e. the matrix whose columns are the eigenvectors «, normalized to the unit length.
Matrix U is orthonormal: U~'= U". Let us present matrix A as the following triple
product

A=UAUT, (116)

substitute it into (115) and premultiply the result by UT:

AU'x=U"h
or
Ay =, (7
where
v=U"v and ¢=U"h (118)

Having obtained the sotution of the diagonal system (117) one can find

x=Ur=7Y pu, (119)

i= |

which means that the modal superposition is a weighted superposition of the cigenvectors
u, and the weights y, are solutions of (117). Clearly, components ¢, of the vector ¢ (118) are
dot products of the cigenvectors and the load vector b:

e=ub=u-h i=1,....n (120)

Hence, if 4 is parallel to a certain eigenvector i, (we can say that the active loud follows u,),
then itis perpendicular to all others and ¢, = 0 for all i # j. Usually the modal superposition
is imited to, say, p low modes under the assumption that the load vector & belongs to
a vector subspace spanned by eigenvectors uy, U, ..., u,. Therefore ¢, =0 for i = p+1,
p+2.....m

The great advantage of the modal analysis lies in the fact that it is applicable to any
linear system. Its disadvantage is revealed in the requirement to solve a full or a partial
cigenvalue problem. The symmetry approach has the exact opposite advantage and dis-
advantage: the method is explicit, no cigenvitlue problem has to be solved; however,
it is applicable to symmetric systems only. It is interesting to note that if the primitives
of the FSS have one degree of freedom each (m = 1) and the corresponding symmetry
group G possesses one-dimensional irreducible representations only, then both methods
are identical. [n this case matrix A, becomes diagonal and consists of h eigenvatues of
A, =ZI_,Q(g,)q,. while matrix U, = U® I, = U is the fundamental matrix, hence the
full cigenvalue problem has an explicit solution. Several matrices possessing this property
are given in Dinkevich (1986).
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T SYMMETRY APPROACH IN STRUCTURAL ANALYSIS OF A VACUUM VESSEL

7.1. To illustrate the symmetry technique we will trace here simplifications in the
structural analysis of the vacuum vessel of a fusion machine subjected to a set of loads with
different types of symmetry. The vacuum vessel (chamber camera) is a toroidal shell with
a circular (or D-shape) cross-section. It has many horizontal and vertical penetration ports
which are located cyclically symmetric in the circumferential direction, These ports together
with the supports (usually placed between the horizontal ports) reduce geometrical sym-
metry of the vessel from D, (axisymmetry) to D,,. where n ~ 10-20. To simplify the
problem we assume # = 4. Hence, the structural model of the vacuum vessel has symmetry
D, and consists of /i = dn = 16 primitives which are 43 sectors with a half circular cross-
section : see Figs 2 and 3 and compare with Fig. 1.

We begin with the case when there is no parametric load and the active load s
arbitrary. In this case matrix equation 4, v, = A with matrix 4, given by (94) is explicitly
decomposed to the following form

A 3y ¢
A ¥ C:
!\x Vi Cy

Ay 1y ¢y

Al v s

A e = e (121)
A; ! ¢

a"\v( Vs Oy

Ay T Cu g

Ay Moo Cro

Agg Yo Crg2

where A ... Ay are determined by (103) -(104) and A, and A, by (105) (106). Subvectors

Fig. 2. Toroidal vacuum vessel (penetration parts and supports are not shown). System 12,
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Fig. 3. Fundamental primitive of system D .

Cie. ...y (of order m) are calculated by

¢ bu
Cr l n=d h"+4
: == (Sl®lm) (lzz)
IS 4u§1 ! b;ul»K
Cx h;:+12

Subvectors ¢q, and ¢yq,. 7 = 1, 2, are of order 2m. They may be presented in the following

form [compare with (107)]:
[('u. 1 l] [E‘J.l 2]
Co = . Coay =q
Caygz Covy

Cron Cronz
Cigy = [ « Crexr = . (123
Ciog2 Cru bt

Hence, it is sufficient to compute only ¢y, and ¢,y ¢

r - { r - N\ r T
Coq 1] h,
Cyy Co g2 1 7= N ) | i b“ 4
I B IV =§J3£;%” Ul ®L, ‘;::‘ - (129)
Croq2 -1 ] h,.uz

Finally one finds vector x

~ - ;o - - - - -
X, L0 0 T O I o ¥
Xped 1 i P —1=1 y: Ve
—_— I,, m——— -y i
Xivs 4 [ L I I I ® ! LB +( ) ¥s
X2 1-H-=1] 1t Ya Yy
- - - - - - - o3 - 7
Yo+ Vo
I .-
+ﬁ““* Your=Jiou .ou=1234 (125)
Year— Vo2
Yozt
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7.2. The vacuum vessel is designed to confine the plasma ignited in it therefore the
majority of its loadings is associated with plasmas. that is. with several scenarnios of plasma
motions and disruptions. The plasma induces the parametric and the active loads on the
vacuum vessel. To simplify these plasma-induced loadings we will associate the temperature
distributions throughout the vessel with the parametric loads only. Then the active loads
will be the Lorentz’s electromagnetic forces. that is. the pressure gradients, Vp. which are
equal to the cross products of the eddy current, J, induced in the walls, and the magnetic
field, B. created to confine the plasma inside the vessel: Vp = J x B.

One set of such loads corresponds to the horizontal {(inboard) axisymmetic plasma
motion. These loads, both parameteric and active, have symmetry D, , whose intersection
with geometric symmetry Dy, gives the actual symmetry of the model Dy, The active load
follows the unity irreducible representation of group D, This case was discussed in the
previous section.

7.3. Another set of plasma loads relates to the axisymmetric vertical plasma motion.
Clearly, in this case the temperature distributions above and below the midplane are not
identical, therefore the parametric load does not have a horizontal plane of symmetry. Its
symmetry is C,,. hence, the actual symmetry of the model is D, 0 C,, = C,,. Insuch a
case the vacuum vessel is divided into /i = 2n = § primitives which are 45 sectors with a
circular cross-section, that s, they are double the size of those in Figs 2 and 3.

The stiftness matrix A, takes the form

ALC) = d : “ . (126)

SYMMETRIC

Its blocks are of order 2m. They are symmetric according to Table 6. Group (4, has four
one-dimensional irreducible representations and a single two-dimensional one, therefore
matrix A, (126) may be transformed by the similarity transformation to the following
block diagonal form

A, = A 4 (127)

The order of A,..... Ay is 2m while dim A, = 4m. The active load follows the unity
representation which is ¢, for group C,,. henee, in accordance with (100), ¢, = -+ = ¢5 = 0.

Thus one has 1o solve only one 2m x 2m subsystem A,y = ¢,. where

A=A +Ad+de ¢ =h (12%)
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The total system response is determined by
X, === (12 (129)

7.4. As an alternative to the above case let us consider the vacuum vessel model C,,
in which the system is divided into another set of /# = 8 primitives. They are 90” sectors
with a half circular cross-section and each has 2m degrees of freedom, the same as primitives
of C,.. The stiffness matrix A, has the following structure

a4, An AtlA A AT
T4, 4, (4T 4. 4,
A, Ayl AT A 4,
A(Cy) = ks  As . (130)
A, 4, Al
A, A
Ay A,
SYMMETRIC _-] A,

All its blocks are of order 2m, blocks A, and A arc symmetric. Group Cy, (see Tuble )
has cight one-dimensional irreducible representations 174, Based on them matrix A4,
{130) 1s transformed to

r~ -

Ay
A
Ay
A, = Al (131)
As
A
A,
Ay |

and dim A, = 2m, r=1,...,8. Blocks A,, A, A and Ay are real and symmetric because
they correspond to real irreducible representations. Others are Hermitian and form complex
conjugate pairs: A, and Ay = A, A; and A; = A, The active load follows the unity
representation which in this case is t,, hence, it is necessury to solve subsystenm Ay, = ¢y,
where

A=A+ ds+ AT+ A+ A+ AL, cy=h. (132)

Having obtained its solution we find
Xy ==y = (172 (133)
7.5. In the above Subsections 7.2-7.4 we have suggested that the active loads followed
the unity representation of groups D, C,, or Cy, indicating that these loads had symmetry
D,,. C,, or Cy,. respectively. In fact, those of the electromagnetic forces which are induced

on the walls of the penetration ports do not possess horizontal and vertical planes of
reflection. Instead they have a center of inversion and create torsion moments around the
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ports. Hence, strictly speaking. symmetry of the active foad is only C,. Then in accordance
with Figs 1 and 2 primitives §,-S, are subjected to the same load. sav. b,. primitives
S5-5, to another load A while primitives S,-5,. and §,:-S,, are subjected 10 A, and
b, .. respectively, where A, Ao, b, and b are arbitrary load vectors of order m. The total
load vector is

bl = 1d[b bbb, bibibb bbby bbb b (134}

*

A factor 1/4 is introduced to satisfy eqn (100) in a case where b, = b = b, = b, (see the
footnote on p. 1239). Substituting (134) into {78) and invoking Table 9 we find that there
are four non-zero subvectors ¢, in the right side of eqn (121):

i

Ld(h, +hthythy o)
14(}}) '}‘{’5"17‘;—/7};}

y

il

(a0

co=dh,—h.—bh,+h )
Vb ~hoth,—h 1) (135)

il

Co

Having solved four m x m subsystems

Ay =c¢p, Avra =l Aavs=coand Agr, = (130}
where AL A, are given in Table T and imtroducing thar solutions into v, = U v, we
obtain

Np=ag= N, =a, o= P ) g

i

AW N =\, = V(= l “I(."] +<l')) ”(.l‘, *,"(V)!
No = Ny o= vy o= Xgao= Ay b e, =]
Nyp = Vs = Xy = Xy, = !’4{( “'\1 "_;‘,‘,) '"{_V\ ““\4,”’ {I§7)
7.6. Now we assume that symmetry of the parametric loads is also ¢y, Then the actual
symmetry of the vessel model is 0,0 Cy = Cy. 1t consists of i = n = 4 primitives which
are 90 scectors with a circular cross-section. Euch primitive has 4m degrees of freedom.
Now the stiffness matrix

A(CH = " (13%)

SYMMETRIC A,

can be explicitly block dingonalized to
Ay

A = ’ . (139)
Ay

A 1

where dim A, = - = dim A, = dm. Since the active load follows the unity representation
of C, which is t,. one has to solve the subsystem A, y; = ¢y, where

Av=d +d+48 ci=h (140)
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The system response is determined by

X, ==

(14D)

7.7. Finally. we consider a non-axisymmetric plasma motion and disruption. and
assume that symmetry of plasma loads is equal to C,,. i.e. it consists of one vertical plane
of reflection. If this plane does not coincide with one of the vertical symmetry planes of the
vacuum vessel, then the model has no symmetry: D,,(N1C,, = C,. For such a case it is
necessary to model the whole vessel. If D, NC,, = C,, the model is divided into two
primitives which are 180°-sectors with 8m degrees of freedom each. Then

(142)

and it 1s necessary to solve a subsystem

(di+d)y, =h

(143)
of order 8. The total response of system €, is described by

Xy = X, = (l/f\( 2}’7. (144)

7.8. The Compact Ignition Tokamak (CIT) vacuum vessel structure with 18 radial
penetration ports and 20 supports is the FSS D, It possesses two vertical and one horizontal
symmetry planes and one vertical and two horizontal axes ¢, lying at the intersections of
the planes, see Fig. 4. In order to increase the degree of symmetry of the analytical model,
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Fig. 4. The CIT vacuum vessel model (vertical ports and supports are not shown). System 0y,
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two artificial radial ports were addedt. By adding these ports the vacuum vessel structure
can be represented by the FSS D, : see Fig. 5. However, with regard to the applied plasma
disruption loads the actual symmetry of the model was reduced to Cs, and then to C,,
and both models were used in the structural analysis of the CIT vacuum vessel by utilizing
the MSC/NASTRAN finite element computer program. The fundamental primitives of the
vacuum vessel models D,y Cagn. Cane and Cay are shown in Fig. 6.
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